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Association between Children’s Average, Current, and Past Peer Context and Their 
Own Level of Aggression 

 
1  Conceptual Overview 
 
Affiliating with aggressive peers is one of the strongest predictors of children’s own 
aggression (e.g., Coie & Dodge, 1998). This association likely reflects both selection 
and influence processes (e.g., Kandel, 1978). For example, aggressive children may 
choose to spend time with other aggressive youth (selection). In turn, affiliating with 
aggressive peers may lead children to become more aggressive over time (influence).  
 
Disentangling selection and influence processes is complicated by the dynamic nature 
of children’s peer networks: new friendships form and old friendships dissolve. 
However, despite the instability in the identities of particular network members, there 
can be stability in the characteristics of these peers (Neckerman, 1996). For example, a 
child may end a friendship with one aggressive peer and form a friendship with another 
aggressive peer: the identities of the peers have changed but the child’s typical (i.e., 
averaged over time) peer context is the same.  
 
Therefore, at any time the level of aggression within a child’s peer network reflects two 
factors: (1) the child’s general tendency to affiliate with aggressive peers; and (2) the 
child’s deviation from that tendency at that time. A child’s general tendency to have 
aggressive peers indicates between-person variation and is labeled “average peer 
context”; a child’s deviation from that typical level of peer aggression at a particular 
assessment indicates within-person variation and is labeled “current peer context.” 
Children’s current behavior can also be impacted by their previous peers’ behavior.  A 
child’s deviation from their average peer context at the past assessment also indicates 
within-person variation and is labeled “past peer context.”  
 
The goal of the current analyses is to explore the independent contributions of children’s 
average, current, and past peer context to their own aggression. Because boys are 
generally more aggressive than girls (Coie & Dodge, 1998), the moderating effect of 
gender will also be explored.  
 
1.1 Research Questions:  

1. Are individual differences in the tendency to affiliate with aggressive peers 
associated with a child’s average aggression? 

2. Are changes in current peer context associated with changes in a child’s 
aggression?  

3. Are changes in past peer context associated with changes in a child’s 
aggression?  

4. Are these associations similar for boys and girls?  
 

1.2 Statistical Questions 
1. Is between-person variation in peer context associated with a child’s 

average aggression? 
2. Is within-person variation associated with changes in a child’s aggression?  
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3. Is lagged within-person variation associated with changes in a child’s 
aggression?  

4. Are these associations moderated by gender?  
 
2 Method 
 
2.1 Participants  
 
Participants were students at in a school district in a rural, working-class community. 
Current analyses focus on a sample of 427 students (193 girls, 234 boys) who were 
enrolled in 3rd (N = 146), 4th (N = 146), or 5th (N = 135) grade in Fall 2001. Students 
participated until they completed 7th grade. To describe students’ peer contexts, data 
were collected from all eligible students at each assessment (92 - 94% of all enrolled 
students). All youth in the district attended a single elementary (K – 5th grades) and 
middle school (6th – 8th grades). In elementary school, there were six self-contained 
classes (M = 25 students). In 6th grade, youth remained with peers from their homeroom 
class (M = 23 students) for most of the day, switching teachers for different subjects. In 
7th grade, youth switched peers and teachers for each subject. Consistent with the 
community population, 99% of the participants were Caucasian. The distribution of 
achievement scores for 5th graders at the school was similar to the statewide 
distribution, but the district had above average poverty and school dropout rates. 
 
2.2 Procedure 
 
Peer-nominations were obtained through a 45-minute group-administered survey in 
October and May of each school year. Teachers left the room during survey 
administration and completed a brief survey about each participant in their class. Two 
weeks prior to data collection, parents received a letter describing the study. Children 
participated only if they assented and if their parents did not return a form exempting 
them from the study. 
 
2.3 Measures  
 
Response Variable 
 
Teacher-rated Aggression. Teachers rated the degree to which 32 statements were true 
for each student (1 = Does not apply at all to 5 = Applies very much). One scale, 
Aggression, described students’ tendencies to display direct forms of aggressive or 
defiant behavior (fights; breaks rules; teases classmates; trouble accepting authority; 
harms others; median α = .91).  
 
Predictor Variables  
 
Grade. Students were followed from 3rd through 7th grade.  
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Semester. Data were obtained twice each school year: once in the fall and once in the 
spring. Semester was coded 0 for the Fall semester (generally late October) and 1 for 
the Spring semester (generally late April or early May).  
 
Cohort. There were three cohorts of youth in this study. At the first assessment, the 
oldest cohort (cohort = 1) was in 5th grade, the middle cohort (cohort = 2) was in 4th 
grade, and the youngest cohort (cohort = 3) was in 3rd grade.  
 
Gender. Gender was coded 0 for girls and 1 for boys. 
 
Number of Group Members: To identify youth who were members of the same social 
group, Cairns’ Social Cognitive Mapping approach (Cairns, Cairns, Neckerman, Gest, & 
Gariepy, 1988) was used. At each assessment, students were asked, “Are there some 
kids in your class who hang around together a lot?” In middle school, students were 
allowed to nominate groups of kids in the entire grade. Students were given space to 
write nine groups of up to 10 peers; they were asked to write as many or as few groups 
as they wanted. Collecting peer nominations is an alternative to observing who each 
child spends time with: Past research indicates that the number of times two students 
are named in the same group correlates with the number of times that dyad is observed 
to interact (Gest, Farmer, Cairns, & Xie, 2003). Peer nominations were aggregated into 
an n x n co-nomination matrix, with n = number of students in the class or grade. The 
off-diagonal cells in the matrix indicated the number of times each dyad was named in 
the same group; the diagonal cells indicated the number of times each child was named 
to any group. Principal Components Analysis with Varimax rotation was used to identify 
groups (i.e., “components”) of three or more youth with highly correlated nomination 
profiles (i.e., they were often named by classmates as being in the same group). Youth 
were members of any group on which they loaded > .32, ensuring that they shared 10% 
of the variance in their nominations with the group. Students who loaded highly on 
multiple components were members of multiple groups. Students who did not load on 
any component were isolates. Number of group members was the number of different 
peers who were in one or more groups with the child.  
 
Group Members’ Peer-nominated Aggression. Students were given a roster and asked 
to nominate classmates who fit 12 different descriptors. In elementary school, children 
were only allowed to nominate peers in their own class; in middle school, they were 
allowed to nominate peers within their entire grade. The mean number of nominations 
received for “starts fights” and “hits and picks on others” (median r = 0.94) was divided 
by the number of nominators in the class (in elementary school) and grade (middle 
school). The different number of nominators led the absolute size of these scores to 
vary considerably between elementary and middle school. Therefore, mean proportion 
of aggressive nominations was standardized within grade. At each assessment, the 
average standardized peer-nominated aggression of a student’s group members was 
calculated. Group members’ aggression was treated as missing for youth who were not 
in any group at a given assessment. Fewer than 4% of students were not in a group at 
any given assessment.  
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Table 1 summarizes the variables included in the current analyses. The levels for 
categorical variables and possible range for continuous variables are noted.  
 

Table 1. Summary of Variables 
Variable Name Variable Type Level or Possible Range

Predictor Variables
Gender SexF Categorical 0 = Boy 1 = Girl
Cohort in study CohortID Categorical 1 = Youngest, 2 = Middle, 3 = Oldest
Grade Grade Continuous 3rd – 7th grade
Semester SemesterF Categorical 0 = Fall, 1 = Spring
Number of group members Sz_gf Continuous 0 - 31
Group Members’ Average Aggression gfavzppagg Continuous

Response Variable
Teacher-rated Aggression tagg Continuous 1.00 - 5.00

Variable Description

33 +− −≈Z

 
 
2.4 Study Design 
 
2.4.1 Data Collection Design 
 
Data were collected using a cohort-sequential longitudinal design. In this type of 
research design, data are obtained from multiple cohorts of participants over time. The 
current study focuses on three cohorts of students: At Time 1 (October 2001), the 
youngest cohort was in 3rd grade, the middle cohort was in 4th grade, and the oldest 
cohort was in 5th grade. All three cohorts of students were then followed until they 
completed 7th grade, which was May 2004 for the oldest cohort, May 2005 for the 
middle cohort, and May 2006 for the youngest cohort. Table 2 summarizes when data 
were obtained from each cohort.  
 

Table 2. Data Collection Summary 
Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 10
Oct. '01 May '02 Oct. '02 May '03 Oct. '03 May '04 Oct. '04 May '05 Oct. '05 May '06

Youngest 3rd 3rd 4th 4th 5th 5th 6th 6th 7th 7th 
Middle 4th 4th 5th 5th 6th 6th 7th 7th - -
Oldest 5th 5th 6th 6th 7th 7th - - - -

Cohort

 
 
Researchers use cohort-sequential designs for several reasons:  
 
First, these designs provide replications to test whether effects are unique to a particular 
group of individuals or whether they are more robust and generalizable across multiple 
groups of people. In the current study, it is possible to test whether peer context is 
similarly associated with child aggression across all three cohorts. When results are 
replicated, it suggests that the results are not solely dependent on a particular, unique, 
group of students. 
 
Second, cohort-sequential designs can be an efficient way to examine a large age 
interval within a shorter period of time. For example, in the current study, it is possible to 
describe developmental trajectories from 3rd through 7th grade, even though only some 
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of the participants were assessed when they were in 3rd grade. In fact, data collection 
could have ended after Time 6 while still allowing this grade range to be examined.  
 
Finally, cohort-sequential designs make it possible to test for generational differences in 
how variables are related to each other. For example, are peers more influential for 5th 
graders in 2000 than they were for 5th graders in 1960? Although interesting, this use of 
cohort-sequential designs is not possible to analyze with the current data. 
 
2.4.2 Data Analytic Design 
 
Before analyzing data from a cohort-sequential research design, it is necessary to 
consider how to represent time. In some cases, time-in-study (i.e., Time 1, Time 2, Time 
3…) might be the best option. For example, in a study examining the impact of an 
intervention given between Time 1 and Time 2, time-in-study may be the most 
appropriate representation of time: Time 1 is a pre-test, occurring prior to the 
intervention; Time 2 is an immediate post-test, occurring after the intervention; the 
remaining times are longitudinal follow-ups to examine whether the intervention effects 
fade over time. In this type of study, the relationship to the intervention is likely more 
important than the fact that data was collected from multiple cohorts of students.  
 
Alternatively, in other studies it may be appropriate to realign the data using a different 
metric of time, such as grade or age. For example, at Time 5 and Time 6 in the current 
study, the three cohorts of students were in 5th, 6th, and 7th grade. Children’s peer 
experiences may be very different across these three grades. In this school district, 5th 
graders were in self-contained classrooms with a single teacher and the same group of 
classmates the entire day. Their interactions with students in other classrooms were 
minimal. In 6th grade, students were in middle school and remained with the same 
classmates for most of the day, but they had different teachers for different subjects. 
There were more opportunities for cross-classroom peer interactions than in 5th grade. 
Finally, in 7th grade, students switched peers and teachers for every class.  
 
In the current study, grade, rather than time-in-study, is a more appropriate metric of 
time. Table 3 summarizes how the data was realigned prior to analyses.  
 

Table 3. Data Analytic Summary 
Cohort Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring

Youngest 3rd 3rd 4th 4th 5th 5th 6th 6th 7th 7th 
Middle - - 4th 4th 5th 5th 6th 6th 7th 7th 
Oldest - - - - 5th 5th 6th 6th 7th 7th  
 
An example of the SAS syntax to realign the data is provided in Figure 2 below. Figure 
2a shows a part of the data before it is realigned (when the variables are listed by time 
in the study rather than grade). Figure 2b shows the data after it is realigned. For 
example, student 6110 is in the oldest cohort (cohort 1). At Time 1, the oldest cohort 
was in fall semester of 5th grade. In the realigned data set, the value of pp1aggr for 
student 6110 is now under ppaggr5F. Student 6110 has no data for ppaggr3F – 
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ppaggr4S, as no data was collected from this student prior to 5th grade. Student 4613 is 
in the youngest cohort (cohort 3). At Time 1, the youngest cohort was in the fall 
semester of 3rd grade. In the realigned data set, the value of pp1aggr for student 4613 is 
now under ppaggr3F.  
 

 
Figure 1. Sample SAS Syntax to Realign Data by Grade Rather Than Time-in-Study 

 
a)  

 
b)  

 
Figure 2. Subset of the (a) Original Data and (b) Data After it is Realigned 

 
3 Analytic Approach  
 
One of the assumptions of the general linear model is that the residuals are 
independent (i.e., uncorrelated). When data are from the same person, however, this 
assumption is typically violated: people tend to be more similar to themselves than they 
are to other people. For example, if 10 people are measured on three occasions, we do 

/* Realign the data so that variables are given by grade rather than wave  
   To do this, variables are renamed separately by cohort 
   For example, cohort 3 is in the fall of 5th grade at time 5 whereas  
     cohort 2 is in the fall of 5th grade at time 3 */ 
 
DATA Work.Example2; SET Work.Example2; 
 
IF cohort=3 THEN DO; 
ppaggr3F = pp1aggr; ppaggr3S = pp2aggr;  
ppaggr4F = pp3aggr; ppaggr4S = pp4aggr;  
ppaggr5F = pp5aggr; ppaggr5S = pp6aggr;  
ppaggr6F = pp7aggr; ppaggr6S = pp8aggr; 
ppaggr7F = pp9aggr; ppaggr7S = pp10aggr; END;  
 
IF cohort=2 THEN DO; 
ppaggr4F = pp1aggr; ppaggr4S = pp2aggr;  
ppaggr5F = pp3aggr; ppaggr5S = pp4aggr;  
ppaggr6F = pp5aggr; ppaggr6S = pp6aggr; 
ppaggr7F = pp7aggr; ppaggr7S = pp8aggr; END; 
 
IF cohort=1 THEN DO; 
ppaggr5F = pp1aggr; ppaggr5S = pp2aggr;  
ppaggr6F = pp3aggr; ppaggr6S = pp4aggr; 
ppaggr7F = pp5aggr; ppaggr7S = pp6aggr; END; RUN; 
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not have 30 completely independent observations; measurements within a person are 
likely to be correlated. In other words, the effective sample size is less than 30 (how 
much less depends on just how highly correlated observations are within a person). An 
analysis that ignores the correlations among the observations tends to underestimate 
the standard errors, which in turn can lead to the wrong conclusions.  

 
In the current study, students’ aggression and peer group context were measured on 
multiple occasions (Range: 2-10 occasions, M = 7.2 occasions). Therefore, to analyze 
the relationship between students’ peer group context and their aggression, an analytic 
approach that can account for the non-independence of these observations is needed.   

 
3.1 Repeated Measures ANOVA  

 
One approach that is often used to account for correlated errors is repeated measures 
ANOVA (Hedeker & Gibbons, 2006). The model for a multiple-sample repeated 
measures ANOVA is given by:  
  

hijhihjjhhij ey +++++= )()( πγττγµ  
  

Here, the response variable y for person i in group h at time j is a function of the overall 
mean of variable y (μ), a fixed effect of being in group h (γh), a fixed effect due to time j 
(τj), a fixed group by time interaction (γτ)hj, a random effect for subject i nested in group 
h (πi(h)), and a random error for person i in group h at time j. In repeated measures 
ANOVA, the non-independence of observations within a person is captured by the 
random effect of subject.  
 
In the most restrictive case of repeated measures ANOVA, compound symmetry is 
assumed (Hedeker & Gibbons, 2006): compound symmetry exists when the variance of 
y is the same at each assessment and when the covariances between observations at 
different assessments are also equal. The slightly less restrictive assumption of 
sphericity is met if the variances of the differences between observations at any two 
assessments are equal. Unfortunately, sphericity is unlikely to hold in longitudinal data 
because observations that are closer in time tend to be more highly correlated. 
Furthermore, if groups undergo different treatments or change differently over time, the 
variance in y is likely to increase. It is possible to relax the assumption of sphericity by 
specifying more general variance-covariance structures. However, when these 
alternative structures are used, balanced data is required: in other words, all 
participants must be observed at the same assessments and participants who are 
missing data at any assessments are discarded.  

 
3.2 Multilevel Modeling (MLM) 

 
An alternative approach is to use a multilevel modeling (MLM) strategy,1

                                                 
1 Multilevel models have also been referred to as hierarchical linear models, random coefficients or effects 
models, mixed-effects regression models, and variance component models (Hedeker & Gibbons, 2006). 

 which treats 
time as nested within individuals (Hedeker & Gibbons, 2006; Singer & Willet, 2003; 
Snijders & Bosker, 1999). As with repeated measures ANOVA, MLM can account for 
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the non-independence of errors that occurs when multiple observations of a variable are 
obtained from the same person. The primary difference is in how the non-independence 
is specified. In ANOVA models, the random effect for subjects captures differences 
between participants in terms of their overall mean. Within an ANOVA model, however, 
any between-person differences in patterns of change over time cannot be disentangled 
from the overall error term.  
 
In contrast, within a multilevel model, participants can differ from each other not only in 
their overall mean but also in how they change across time. These variations are 
modeled by adding random subject effects into a standard regression model, in which 
time is treated as a continuous variable. Rather than relying on a single intercept and 
slope to describe how the outcome changes over time, participants are assigned their 
own subject-specific intercept and slope. In other words, students may differ in their 
initial level of the outcome and they may differ in how they change over time: some 
students may increase in the outcome, other students may increase at a faster rate, 
others may not change at all, and still others may decrease in the outcome over time.  
 
One advantage of multilevel models is that because time is treated as continuous, they 
can easily accommodate unbalanced data in which students are not all measured at the 
same assessments (Hedeker & Gibbons, 2006; Singer & Willet, 2003). As noted above, 
the current study utilized a cohort-sequential design. Therefore, some students did not 
have data in 3rd or 4th grade (see Table 1). In addition, not all students were present at 
every wave; at any given assessment, some students were absent, had moved, or were 
exempt. Using MLM, it was possible to use data from all 427 students. Students 
contributed information for effect estimation only at times when they participated. 
Although all of the students in the current study participated at two or more 
assessments, an MLM analysis could even include data from students who only 
participated at one assessment: these students would contribute to the estimation of 
between-person effects, but not within-person effects. 
 
3.2.1 Specifying the Multilevel Model 
 
In multilevel modeling, the within-person effects are referred to as Level 1 effects and 
the between-person effects are referred to as Level 2 effects. A general multilevel 
model is given by:  
 
Level 1 Model: 
  

Response Variableti = β0i + β1i (time) + eti 

 
Level 2 Model: 
  

β0i = γ00 + ζ0i 

β1i = γ10 + ζ1i 

 
In the Level 1 model, the response variable for person i at time t is a function of a 
person-specific intercept, β0i, a person-specific effect of time, β1i, and a random residual 
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error, eit. In turn, the person-specific intercept is a function of an overall grand mean, 
γ00, and a student’s random deviation from that mean, ζ0i; the person-specific slope is a 
function of the overall slope for that population, γ10, and a student’s random deviation 
from that slope, ζ0i. 
 
Essentially, each person is assigned their own regression line: the Level-2 random 
errors describe how the person-specific regression lines vary from the population-level 
regression line and the Level-1 random errors describe how each person varies from 
their own regression line at a specific assessment. Additional variables can be added to 
the model at either level: Time-varying variables can be added at Level 1 to try to 
reduce the residual error; they attempt to explain why people are off their predicted 
regression lines (e.g., Are people more aggressive at assessments when they have 
fewer friends?) Time-invariant (or person-level) variables can be added at Level 2 to try 
to reduce the intercept or slope variance; they attempt to explain why a person’s 
regression line is different from the population regression line (e.g., Do boys start off 
more aggressive than girls? Do boys increase in aggression faster than girls?)  
 
3.2.2 Group-mean centering 
 
Multilevel models to analyze longitudinal data are being used more often; however, 
many of these applications do not take full advantage of the strengths of this analytic 
approach. In particular, many applications of MLM include time-varying covariates, but 
do not try to disentangle the between-person and within-person effects of these 
covariates. For example, someone may receive a high score on depression at a 
particular point in time because they are generally a depressed person (a between-
person effect). Alternatively, a normally upbeat person may receive may a high score on 
depression because a close friend recently died (a within-person effect). These effects 
may be independently associated with a person’s outcome (additive effects) or they 
may interact (e.g., within-person variations in depression may only matter for those who 
are not generally depressed). 
  
Between-person and within-person effects of a time-varying covariate can be 
disentangled by using group-mean centering (Raudenbush & Bryk, 2002). This 
approach, also known as within-person centering (Singer & Willet, 2003), subtracts 
students’ own cross-time mean from their score at each assessment. Group-mean 
centering and the inclusion of the cross-time (between-person) mean at Level 2 ensures 
that time-varying effects only reflected within-person variability across time, over and 
above any stable (unobserved) individual differences and allowed us to estimate how 
changes in peer context were related to changes in adjustment (see Kim, McHale, 
Crouter, & Osgood, 2006 for a similar application).  
 
Figure 3 illustrates what can be gained from group-mean centering. Group members’ 
aggression was measured for two students across 10 assessments. The time-varying 
values for group members’ aggression are shown with red squares for student 1 and 
with green triangles for student 2. For example, at the first assessment, the average 
aggression of student 1’s group members was Z = 1.0 and the average aggression of 
student 2’s group members was Z = -0.4. Group members’ aggression varies across 
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assessments for both students. However, on average student 1 affiliates with highly 
aggressive groups (Z = .9) and on average student 2 affiliates with non-aggressive 
groups (Z = -0.2).  
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Figure 3. Separating Between-Person from Within-Person Peer Context Effects  

 
Table 4 shows part of a data set corresponding to the data shown in Figure 3. At Time = 
1, student 1 affiliated with highly aggressive group members (GroupAgg = 1). Within the 
data alone, it is unclear whether the value is high because student 1 usually affiliates 
with aggressive groups or whether this value is an anomaly for this student. Group-
mean centering allows us to separate these two effects into a between-person effect 
(i.e., BPGroup) and a within-person effect (i.e., WPGroupLag0).  The between-person 
effect represents the student’s average group aggression. Because average group 
aggression is a time-invariant predictor; (i.e., it is a person-level effect), the value of 
BPGroup for student 1 is always 0.9. In contrast, the within-person effect indicates how 
the student’s current group aggression deviates from the student’s average group 
aggression. Current group aggression is a time-varying predictor; positive values 
indicate that a student is affiliating with more aggressive group members than usual. For 
example, at Time 1, student 1’s group members are slightly more aggressive then usual 
(WPGroupLag0 = +0.1) whereas at Time 2, student 1’s group members are slightly less 
aggressive than usual (WPGroupLag0 = -0.1).  
 

Table 4. Example Data Set Showing Variables after Group-Mean Centering 
Student Time GroupAgg BPGroup WPGroupLag0 WPGroupLag1

1 1 1 0.9 0.1
1 2 0.8 0.9 -0.1 0.1
1 3 0.5 0.9 -0.4 -0.1
1 4 0.8 0.9 -0.1 -0.4
1 5 1.2 0.9 0.3 -0.1
1 6 0.9 0.9 0 0.3
1 7 1 0.9 0.1 0  
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After group-mean centering, it is also possible to create a variable to indicate whether a 
student’s group members were more or less aggressive than usual at the past 
assessment. Past group aggression (i.e., WPGroupLag1) is a time-varying predictor. 
Because we do not know the extent to which student 1’s group was aggressive before 
the first assessment, WPGroupLag1 is treated as missing at Time 1.  

 
Once these new variables are created, the independent contributions of average, 
current, and past group aggression on a student’s own aggression can be evaluated. If 
students who typically affiliate with aggressive groups (e.g., student 1) are on average 
more aggressive than students who typically affiliate with non-aggressive groups (e.g., 
student 2), then we would expect the coefficient corresponding to BPGroup to be 
positive. If students are more aggressive at assessments when they have more 
aggressive group members than usual, then we would expect the coefficient 
corresponding to WPGroupLag0 to be positive. Similarly, if students are more 
aggressive at assessments when they had more aggressive group members than usual 
at the past assessment, then we would expect the coefficient corresponding to 
WPGroupLag1 to be positive.  
 
3.2.3 Summary 
 
In sum, given the current design and hypotheses, a multilevel modeling strategy was 
selected as the better approach for the current study. In particular, the current data were 
from a cohort-sequential longitudinal study, which means that there was some missing 
data by design (i.e., the middle cohort was not observed in 3rd grade; the oldest cohort 
was not observed in 3rd or 4th grade). There was also some missing data due to 
students being absent, being exempt, or moving from the school. Repeated measures 
ANOVA approaches that do not assume compound symmetry (which is unlikely to hold 
in the current study) exclude participants who have any missing data. Complete case 
analysis would result in a considerably smaller, and likely biased, sample (i.e., only 
those students in the youngest cohort who participated in all 10 assessments would be 
included).  Multilevel modeling takes better advantage of the full data set, by including 
students in the estimation of effects whenever they had data. In addition, the multilevel 
modeling framework allows questions about how between-person and within-person 
peer group context independently (or interactively) contribute to a student’s individual 
aggression.  
 
4 Exploratory Data Analysis 
 
4.1 Preparing for Longitudinal Data Analyses  
 
Cross-sectional analyses and some ANOVA analytic approaches utilize a person-level 
data set (Hedeker & Gibbons, 2006; Singer & Willet, 2003). In a person-level data set, 
the data for each student is found on a single row; repeated measurements are 
represented as separate variables (i.e., columns). For example, aggression in the fall of 
3rd grade is one variable and aggression in the spring of 3rd grade is another variable.  
In a person-period data set, however, each student has as many rows as there are 
assessments and repeated measurements are represented as different observations of 
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a single variable. For example, row 1 for each student would have their aggression in 
the fall of 3rd grade and row 2 would have their aggression for the spring of 3rd grade. 
Time-invariant variables are constant across rows for each student. (e.g., if a student 
was a boy (sex=1), then each row under the sex variable for that student would equal 1.  
 
Figure 4 below illustrates what a person-level data set looks like compared to a person-
period data set. In the person-level data set, there are 10 variables to represent each 
student’s data pattern across the study (datpat3F through datpat7S). In the person-
period data set, however, data pattern is represented as a single variable. Each row 
contains data for a different assessment. For example, the first row for student 4801 has 
data for the fall of 3rd grade (grade = 3, semester = 0) and the second row has data for 
the spring of 3rd grade (grade = 3.5, semester = 1).  
 
As noted above, in MLM, a participant can have incomplete data on some occasions but 
still be included in the analysis. Setting up the person-period data set allows us to see 
how this occurs. For example, in Figure 4, student 4523 did not participate in the spring 
of 5th grade (his data pattern for this assessment, datpat5S = 0, indicates that he was 
not enrolled at the school). In repeated measures ANOVA, the entire row for this 
student would be removed. In an MLM analysis, however, only that assessment is 
removed from the analysis (the row corresponding to grade = 5.5 for student 4523 in the 
person-period data set).  
 
  
 
 
 

 
 

                                                
 

Figure 4. Comparing Person-Level and Person-Period Data Sets 

In a person-period data set, 
the data pattern for student 
4801 is represented with 1 

variable, with different 
values in each of 10 rows 

(one per assessment) 

In a person-level data set, the data pattern (datpat) for student 
4801 is represented with 10 variables (one per assessment) 
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4.2 Examining Missing Data  
 
In longitudinal data analyses, once the data set is set up properly, the next step is to 
examine patterns of missing data. If the sample changes drastically over time, then 
inferences about relationships among variables can be affected. In the current study, 
students could be missing at a particular assessment for several reasons: they might 
have had moved, be temporarily suspended (or sent to an alternative school), or 
exempt (i.e., their parents had sent a consent form back asking that their child not 
participate). Most of the missing data in the current study was due to the latter two 
reasons (temporarily suspended or exempt); few students moved permanently.  
 
Table 5 summarizes the participation rates for the core sample of students at each 
assessment. Because of the cohort-sequential design of the study, participation rates 
are reported separately by cohort. Because gender is expected to moderate the 
relationships between having aggressive group members and children’s adjustment, 
participation rates are also reported separately by gender. Participation rates ranged 
from 76% (Fall of 5th grade for girls in the youngest cohort) to 98% (Spring of 4th grade 
for girls in the middle cohort; Fall of 4th grade for boys in the middle cohort). Overall, 
67% percent (N = 286) of the sample participated at all waves (6-10 waves, depending 
on the cohort) and 95% (N = 406) participated at four or more waves. 
 
Table 5. Participation Rates at Each Assessment as a Function of Gender and Cohort 

Gender Cohort N Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring
Youngest 71 67 (0.94) 68 (0.96) 57 (0.80) 55 (0.77) 54 (0.76) 60 (0.85) 58 (0.82) 59 (0.83) 57 (0.80) 57 (0.80)

Middle 64 - - 61 (0.95) 63 (0.98) 62 (0.97) 62 (0.97) 59 (0.92) 61 (0.95) 60 (0.94) 59 (0.92)
Oldest 58 - - - - 53 (0.91) 56 (0.97) 54 (0.93) 52 (0.90) 49 (0.84) 49 (0.84)

Youngest 75 73 (0.97) 72 (0.96) 69 (0.92) 68 (0.91) 68 (0.91) 66 (0.88) 68 (0.91) 63 (0.84) 62 (0.83) 60 (0.80)
Middle 83 - - 81 (0.98) 79 (0.95) 79 (0.95) 79 (0.95) 77 (0.93) 75 (0.90) 71 (0.86) 72 (0.87)
Oldest 76 - - - - 73 (0.96) 68 (0.89) 69 (0.91) 67 (0.88) 67 (0.88) 66 (0.87)

427 140 140 268 265 389 391 385 377 366 363Total

7th

Girls

Boys

3rd 4th 5th 6th

 
 
Within each assessment, any students who were enrolled and whose parents did not 
exempt them from the study were allowed to participate (regardless of whether or not 
they were in the core sample of 427 students). Over 90% of students present at the 
school at any given assessment participated.  
 
The amount of data missing further varied across response variables. At each 
assessment, group members’ average peer-nominated aggression was available for all 
students who both participated at that assessment and who had at least one group 
member who participated at that assessment. Teacher-report data were occasionally 
unavailable when a teacher failed to complete a survey for a student. In 7th grade, data 
from one teacher was thrown out in the older two cohorts because that teacher only 
answered a handful of items for each of his students. The exact sample size for each 
variable is reported in Table 6 on the next page. 
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4.3 Descriptive Information for Response Variables 
 
Descriptive information was obtained for three of the time-varying variables in the study: 
teacher-reported aggression, number of group members, and average group members’ 
peer-nominated aggression. The syntax to obtain the descriptive information is provided 
in Figure 5. The sample size, mean, SD, skew, and kurtosis for each of these variables 
is given in Table 6 below.  

Figure 5. SAS Syntax to Obtain Descriptive Information about the Variables 
 

Table 6. Sample Size, Mean, SD, Skew, and Kurtosis for Time-varying Variables 

Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring
Teacher-reported Aggression

N 140 140 264 262 380 380 382 376 344 339
Mean 1.42 1.61 1.38 1.37 1.51 1.58 1.43 1.51 1.57 1.58
SD 0.80 0.89 0.59 0.55 0.74 0.76 0.72 0.73 0.65 0.76
Skew 2.79 1.98 1.99 2.26 1.82 1.60 2.01 1.63 1.60 1.60
Kurtosis 8.16 3.50 4.10 6.43 3.28 2.23 3.73 2.18 3.51 2.33

Number of group members
N 140 140 268 265 389 391 385 377 366 363
Mean 5.68 4.46 5.80 5.09 5.43 5.11 9.15 8.90 9.36 10.03
SD 3.13 2.10 3.24 2.56 2.43 2.48 4.85 4.97 5.32 5.10
Skew 0.41 0.06 0.88 0.78 0.03 0.63 0.90 0.83 0.84 0.76
Kurtosis -0.58 -0.52 1.71 0.15 -0.39 0.34 0.61 0.68 0.58 1.02

Average Group Members' Peer-nominated Aggression
N 137 136 264 265 377 384 383 373 361 358
Mean 0.05 0.06 0.05 0.05 0.05 0.06 0.01 0.01 0.01 0.01
SD 0.06 0.07 0.04 0.05 0.05 0.07 0.02 0.02 0.01 0.01
Skew 2.43 2.84 1.04 1.26 1.64 2.23 3.32 3.33 3.71 3.84
Kurtosis 6.65 9.77 1.50 1.06 2.60 6.45 11.52 11.74 15.49 23.42

7th3rd 4th 5th 6th

 

/* Obtain descriptive information about the response variable */ 
/* Results will be obtained separately for each grade */ 
 
PROC SORT DATA=&udatafile.; 
BY Grade;   * Sort the file by grade; 
RUN;  
 
PROC MEANS DATA=&udatafile. 
MEAN STD SKEWNESS KURTOSIS N; 
WHERE core=1;  * Only include those in the core sample; 
BY Grade;   * Obtain descriptive info separately by grade; 
VAR tagg;   * Identify response variables; 
RUN; 
 
/* Obtaining descriptive information about the predictor variables */ 
 
PROC MEANS DATA=&udatafile. 
MEAN STD SKEWNESS KURTOSIS N MIN MAX; 
WHERE core=1;  * Only include those in the core sample; 
BY Grade;   * Obtain descriptive info separately by grade; 
VAR sz_GM GMavzppagg; * Identify predictor variables; 
RUN; 
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4.3.1 Transforming and Centering Variables 
  
Not surprisingly, teacher-rated aggression was skewed (Range = 1.60 to 2.79 across 
assessments): most students receive low aggression scores from their teachers and 
only a handful of students receive very high scores of aggression. To reduce skew, 
teacher-rated aggression was log transformed.  
 
Centering the predictor variables facilitates interpretation of the results. Grade was 
centered at 5th grade, because that is the earliest grade in which all three cohorts were 
assessed. The number of group members was centered at 5, because that was the 
average number of group members that students had in the fall of 5th grade.  Therefore, 
when the centered variables are included in the model, the intercept indicates the 
average aggression of a student in the fall of 5th grade (i.e., grade – 5 = 0) who has an 
average number of group members (i.e., group size – 5 = 0).  
 
The syntax to transform teacher-rated aggression and to center the predictor variables 
is given in Figure 6 below.  

Figure 6. SAS Syntax for Transforming and Centering Variables 
 
Group-mean centering, described in section 3.2 above, was used to disentangle 
between-person and within-person group members’ peer-nominated aggression. The 
syntax to group-mean center group members’ aggression is given in Figure 7 on the 
next page. In addition to group-mean centering, a variable for the within-person lag 
group members’ aggression (i.e., group members aggression at the previous 
assessment) was created.  
 
Below, the between-person effects are referred to as average group (girls: range = -0.51 
to 0.89, M = -0.13, SD = 0.24; boys: range = -042 to 2.13, M = 0.14, SD = 0.37) and the 
within-person lag 0 effects as current group (girls: range = -1.34 to +2.68; boys: range = 
-2.31 to +4.78). A positive value for current group indicates that a student had more 
aggressive group members at that assessment than usual.  
 
 
 

/* Centering Predictor Variables */ 
DATA &udatafile.; SET &udatafile.; 
 lntagg=log(tagg);   * Log transform teacher-rated aggression; 
 grade5 = (grade-5); * Center grade at 5th grade; 
 sz_GM5 =(sz_GM-5);  * Center at 5 group members, Fall of 5th grade mean;  
 sexF = sex;    * Rename sex variable to include reference category; 
 
LABEL lntagg = "Natural log, teacher-rated aggression"; 

sz_GM5 = "Number of group members, centered around mean = 5" 
 sexF = "Gender, girls = 0, boys = 1" 
 grade5 = "Grade, centered at 5th grade"; RUN; 
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Figure 7. Syntax for Group-Mean Centering of Group Members’ Aggression 
 
4.4 Examining Raw Individual Change Trajectories  
 
Examining the raw trajectories of aggression for each student provides a sense of 
whether and how individuals change in teacher-rated aggression over time, it helps to. 

/* Group Mean Centering */  
PROC SORT DATA=&udatafile.; BY ID Grade; RUN; 
 
PROC MEANS NOPRINT DATA=&udatafile.; BY ID; 
 VAR GMavzppagg; OUTPUT OUT=PersonMeansGMpeer2 
 MEAN (GMavzppagg) = BPGMavzppagg; RUN; 
  * Obtain the mean for the variable GMavzppagg; 
  * OUTPUT the mean to a new file, PersonMeansGMpeer; 
  * Save the MEAN of GMavzppagg as BPGMavzppagg; 
 
DATA &udatafile.; MERGE &udatafile. PersonMeansGMpeer; BY ID; 
 
 WPGMavzppaggLag0 = GMavzppagg-BPGMavzppagg;  
 /* Create a new variable for the current (Lag0) group members' aggression  
    This new variable is equal to the observed group aggression score for  
    that assessment minus a person's average group aggression */ 
 
 IDlag1 = LAG1(id);  
   * Create a new variable that shifts the ID variable values down 1; 
 
 WPGMavzppaggLag1=LAG1(WPGMavzppaggLag0);  
   * Create a new variable that shifts the WP variable values down 1; 
 
IF ID=IDlag1 THEN WPGMavzppaggLag1=WPGMavzppaggLag1; ELSE WPGMavzppaggLag1=.; 
 
/* The result of lagging the ID and WP variables is that the last observation 
for each person is shifted down to become the first observation for the next 
person. The values that are shifted to the next person are then deleted and 
left as missing (we do not know what a person's WP aggression was before they 
entered the study). The example below shows what a small sample of the data 
would look like. Values of WPLag1 in parentheses are set to missing.  
 
    ID  IDlag1  WPLag0 WPLag1 
    1 .    .8     . 
    1 1   -.3     .8 
    1 1   -.5    -.3 
   2 1    .6   (-.5) 
   2 2   -.2     .6 
   2 2   -.5    -.2 
  2 2    .1    -.5 
  3 2   -.3    (.1) 
   3 3    .3    -.3 */ 
 
/* Label the new variables */ 
 LABEL BPGMavzppagg = "Between-person group peer-rated aggression" 
  WPGMavzppaggLag0 = "Within-person group peer-rated aggression Lag=0" 
  WPGMavzppaggLag1 = "Within-person group peer-rated aggression Lag=1"; 
RUN; 
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The syntax to obtain these raw individual change trajectories (or “spaghetti plots”) is 
given in Figure 8 and the individual change trajectories are given in Figure 9.  
 

 

Figure 8. SAS Syntax to Plot Student-Specific Trajectories of Teacher-rated Aggression 
 

 
Figure 9. Observed Student-specific Aggression Trajectories for (a) Girls and (b) Boys 

 

/* Set system options for graphics */ 
GOPTIONS RESET=ALL NOBORDER FTEXT=TRIPLEX FTITLE=TRIPLEX VSIZE=6.0in 
HSIZE=7.0in INTERPOL=JOIN GSFNAME=OUTGRAPH DEV=EMF GSFMODE=REPLACE; 
 
/**** Teacher-rated aggression for Girls *****/ 
FILENAME outgraph "&filesave.\Spaghetti Plot_Teacher-ratedAgg_Girls.bmp";  
  * Save the plot as bitmap to location specified by global function; 
 
TITLE JUSTIFY=CENTER HEIGHT=1.5 "Natural Log Teacher-rated Aggression:Girls"; 
  * Center the text in the title & use HEIGHT = 1.5 for the text; 
 
PROC GPLOT DATA=&udatafile.;  
 WHERE sex=0 & core=1; * Only plot girls in the core sample; 
 AXIS1 LENGTH=4.5in LABEL=(HEIGHT = 1.4 ANGLE=90  
   "Natural Log Teacher-rated Aggression") ORDER=(0 TO 2 BY .5); 
  * AXIS1 = Y-axis; 
  * Y-axis has a LENGTH = 4.5 inches (out of 6 inches above); 
  * HEIGHT = 1.4 sets the size of the label; 
  * ANGLE = 90 places the axis label at a 90 degree angle; 
  * ORDER = indicates that the scale goes from 0 to 2 in increments of .5; 
 AXIS2 LENGTH=5.5in LABEL=(HEIGHT = 1.4 "Grade") ORDER=(3 TO 7 BY .5); 
  * AXIS2 = X-axis; 
  * X-axis has a LENGTH = 5.5 inches (out of 7 inches above); 
  * HEIGHT = 1.4 sets the size of the label; 
  * ORDER = indicates that the scale goes from 3 to 7 in increments of .5; 
 PLOT lntagg*Grade=ID / NOLEGEND VAXIS=AXIS1 HAXIS=AXIS2;   
  * Plot natural log of teacher rated aggression vs. grade for each person; 
  * Do not include a legend; 
  * Obtain specifications for VAXIS (i.e., Y-axis) from AXIS1 from above; 
  * Obtain specifications for HAXIS (i.e., X-axis) from AXIS2 from above;  
RUN; QUIT; 
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In these plots, each line represents a student. Considerable variation in teacher-rated 
aggression is evident; thus even though aggression is often assumed to be a stable 
individual characteristic, there were clear changes in aggression over time. In addition, 
the current analyses will focus on how changes in group members’ aggression are 
associated with teacher-rated aggression. Therefore, student-specific variation in group 
members’ was examined by adapting the syntax above. Figure 10 below displays these 
individual trajectories for group members’ aggression and again, considerable within-
person variation is evident.  
 

 
Figure 10. Observed Student-specific Average Group Members’ Peer-nominated 

Aggression Trajectories for (a) Girls and (b) Boys 
 
5 Analyses 
 
A multilevel modeling (MLM) strategy was used to explore whether stable individual 
differences in peer context were associated with a student’s average aggression and 
whether changes in peer context coincided with changes in aggression. For each 
outcome, a series of two-level models were estimated with SAS PROC MIXED, using 
the Satterthwaite method to estimate degrees of freedom.  
 
5.1 Unconditional Means Model 
 
The unconditional means model (Model 1) estimates the average value of an outcome 
in the absence of any predictor variables. The Level 1 and Level 2 models are given by:  
 
Level 1 Model:  
 
Teacher-rated aggressionti = β0i + eti 

 
Level 2 Model:  
 
β0i = γ00 + ζ0i 
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The Level 1 model indicates that student i’s teacher-rated aggression at time t is equal 
to a student-specific intercept, β0i , plus a residual error, eti. In the Level 2 model, each 
student-specific intercept is equal to the overall grand mean across all students, γ00, 
plus the student’s random deviation from that mean.  
 
Figure 11 illustrates the interpretation of the three parameters in the unconditional 
means model. The light gray dashed line illustrates the grand mean (i.e., the fixed 
intercept, γ00) for the entire sample; on average, teacher-rated aggression is low (γ00 = 
1.4). However, by including a random intercept, individual students are allowed to vary 
around this mean. Student i (darker, dotted line) has a mean teacher-rated aggression 
score of 2.1. The difference between this student’s mean aggression and the grand 
mean is given by ζ0i (the Level 2 residual): here, ζ0i is positive because this student’s 
mean aggression is higher than the grand mean for the sample. The difference between 
this student’s mean aggression and his/her observed aggression at any assessment 
(black squares) is given by eit (the Level 1 residual). Here, the student has a positive 
value of eit

 in the spring of 7th grade (grade = 7.5). Because the residuals are treated as 
random (rather than fixed), we generally focus on the variation of these parameters, 
rather than their absolute values. The variation around the intercept is given by 2

0 iζσ and 
the residual variation is given by 2

iteσ  
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Figure 11. Illustration of the Parameters in the Unconditional Means Model 

 
 
The SAS syntax to obtain the unconditional means model is provided in Figure 12 and 
partial output for this model is provided in Figure 13. 

ζ0i
 

eit
 

γ00 
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Figure 12. SAS Syntax for Estimating the Unconditional Means Model 

 

 

 
Figure 13. SAS Output for Unconditional Means Model 

 
 
5.1.1 Examining the SAS Output 

TITLE "Unconditional Means Model"; 
PROC MIXED DATA = &udatafile. NOCLPRINT NOITPRINT COVTEST METHOD=REML; 
  * NOCLPRINT: do not print the class level information; 
  * NOITPRINT: do not print the iteration history; 
  * COVTEST: print standard error, z-value & p-value for each covariance term; 
  * REML: Use restricted maximum likelihood estimation; 
 WHERE NMISS(core)=0; * Only use observations from the core sample; 
 CLASS ID;     * Treat ID as a categorical variable; 
 MODEL lntagg =  / SOLUTION DDFM=Satterthwaite; 
  * The only fixed effect in this model is the intercept; 
  * Print the solution; 
  * Use the Satterthwaite method to estimate the degrees of freedom; 
 RANDOM INTERCEPT  / TYPE = UN SUBJECT=ID; RUN; 
  * RANDOM INTERCEPT: include a random effect for intercept; 
  * TYPE=UN: use an unstructured covariance matrix; 
  * SUBJECT=ID: observations are nested within child, given in the data by ID;  
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Model Information. It is useful to review this section of the output to confirm that the 
model was actually tested as planned. For example, the output indicates that the data 
set was StatFP.STatApr09 and that the dependent variable was lntagg.  
 
Dimensions. This section of the output indicates that the tested model has two 
covariance parameters (i.e., the intercept variance and the residual variance). “Columns 
in X” indicates that the model has one predictor variable (i.e., the intercept) and 
“Columns in Z per subject” indicates that the model has one dependent variable. There 
were 427 subjects used in the analysis (i.e., the core sample was used), and the 
maximum number of observations for any subject was 10.  
 
Number of Observations. There were 3440 rows of data corresponding to students in 
the core sample of 427 students. Of these, 3007 (87.4%) were used to estimate the 
current model. The remaining rows contained missing values (i.e., the student did not 
have a value for teacher-rated aggression at a particular assessment).     
 
Covariance Parameter Estimates. This section of the output displays the estimates and 
Z-tests for the random effects. In the unconditional means model, there are two random 
effects: The random intercept, UN(1,1,), and the residual variance.  
 
Fit Statistics. Once terms are added to the model, the fit statistics help to determine 
which model best describes the data. The REML deviance (-2 Res Log Liklihood), AIC, 
and BIC for the current model are all provided.   
 
Solution for Fixed Effects. This section of the output displays the estimates and t-tests 
for the fixed parameters. In the unconditional means model there is only one fixed 
effect: intercept.  
 
5.1.2 Interpreting the SAS Output  
 
Across all assessments, the average natural log of teacher-rated aggression, given by 
the fixed intercept, γ00, is 0.33 (t = 21.96, p < .001). In other words, teacher-rated 
aggression was on-average very low: 1.38 on the untransformed 1 to 5 scale. This 
value is consistent with teachers rating two out of the five items as “somewhat true” of 
their students.  
 
Although the average teacher-rated aggression is low, there is significant variation 
around this average: the intercept variance is 0.08 (p < .001). To describe the variation 
across people, this variance can be used to compute the range of scores in which 95% 
of the population is expected to fall. This range is calculated as the fixed effect ± 1.96 
times the standard deviation of the corresponding random intercept. Here, 95% of the 
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population is expected to fall within the range of 08.0*96.133.0 ± , which translates into 
a 95% confidence interval of [1.00, 2.42]2 on the untransformed scale.3

 
 

In addition, it is also possible to calculate an intraclass correlation, or ICC from the 
unconditional means model. The ICC is essentially a within-person correlation: it 
describes the extent to which the Level 1 observations are correlated within the Level 2 
units. Here, the ICC indicates the degree to which student’s scores on teacher-rated 
aggression are correlated.   

2
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The ICC for teacher-rated aggression is 0.08 / (0.07 + 0.08) = 0.53, which indicates that 
slightly more than half of the variation in teacher-rated aggression is between people. 
Typically, aggression is considered to be a highly stable individual characteristic, which 
would imply that most of the variation should be between people. However, in this 
sample almost half of the variation was within-people. This within-person variation is 
consistent with variation that was seen in the plots of observed teacher-rated 
aggression for individual students in Figure 9.  
 
In sum, average teacher-rated aggression is low within this sample, but there is 
significant variation in average aggression across students. The considerable between-
person and within-person variation in teacher-rated aggression suggests that it will be 
worthwhile to pursue both student-level (i.e., between-person) and time-varying (i.e., 
within-person) predictors of aggression. Both of these types of predictors will be 
explored below.  
 
5.2 Unconditional Growth Model 
 
Because the data are longitudinal, the next step after estimating an unconditional 
means model is to estimate an unconditional growth model. This model accounts for 
changes in the outcome that are due to time in the absence of any other predictors. 
There are two indicators of time in the current data: grade in school and semester (fall 
vs. spring). In addition to a linear effect of grade, it is also important to test whether 
there are any quadratic effects of grade. For example, it is possible that aggression 
increases across elementary school and into middle school, but then this increase may 
slow down across middle school. Theoretically, with up to 10 assessments per person, it 
would be possible to test higher order effects (e.g., cubic or quartic effect of grade). 
However, the inclusion of semester is a more interpretable metric of time that will likely 
capture any patterns beyond linear and quadratic effects.  
 
                                                 
2 This range is truncated at 1.0, because values of teacher-rated aggression cannot be less than 1.0. The 
fact that the confidence interval falls below 1 likely reflects that the transformed variable is still somewhat 
skewed. 
3 This 95% C.I. given here should not be confused with confidence intervals that indicate precision of the 
coefficients. The 95% C.I. for the precision of the fixed effect is 0.08 ± 1.96 times the standard error of the 
estimate, or 0.08 ± 1.96*0.0066, or [0.067, 0.092].  
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Whether or not there is a population-level pattern of growth or decline of aggression, 
individual students may become more or less aggressive over time. To test whether 
there is any variation in trajectories of change across students, random effects for the 
linear and quadratic effects of grade can be tested. The Level 1 and Level 2 models to 
test these effects are given by:  
 
Level 1 Model: 
 
Teacher-rated aggressionti = β0i + β1i (gradeti - 5) + β2i (gradeti - 5)2

 + β3i (semester) + eti 

 
Level 2 Model: 
 
β0i = γ00 + ζ0i 

β1i = γ10 + ζ1i 

β2i = γ20 + ζ2i 

β3i = γ30  
 
The Level 1 model indicates that student i’s teacher-rated aggression at time t is equal 
to a student-specific intercept, β0i, a student-specific effect of grade, (β1i), grade2 (β2i), 
and semester (β3i), and a residual error, eti.  
 
As in the unconditional means model, the Level 2 model indicates that each student-
specific intercept is equal to the mean across all students, γ00, plus the student’s 
random deviation from that mean. Because time is now included in the model, this fixed 
intercept indicates the average teacher-rated aggression in the fall of 5th grade, when 
(grade-5), (grade-5)2 and semester all equal 0. The Level 2 model also indicates that the 
student-specific linear slope for grade (β1i) is equal to the average linear slope for grade 
(γ10) and the student’s random deviation from this average (ζ1i). Similarly, the student-
specific effect of grade2 is equal to the average quadratic effect of grade (γ20) and the 
student’s random deviation from this average (ζ2i). Because there are no random effects 
included for semester, the student-specific effect of semester, β3i, is only a function of 
the overall fixed effect of semester; in other words, the association between semester 
and aggression is assumed to be identical across all students.  
 
Essentially, the above equations indicate that the unconditional growth model estimates 
a population-level regression line and student-specific regression lines. The fixed effects 
describe the average initial value (i.e., intercept) and average patterns of change (e.g., 
linear slope, quadratic slope) within a population. The random effects describe how 
students’ regression lines deviate from the population-level regression line. 
 
Figure 14 illustrates the interpretation of the parameters in an unconditional growth 
model with a fixed and random linear effect of grade. The light gray dashed line is the 
average regression line for teacher-rated aggression. Because the variables are 
centered, the fixed intercept (i.e., γ00) for this trajectory corresponds to the average 
teacher-rated aggression in the fall of 5th grade. There is a small positive linear effect of 
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grade (i.e., γ10), which suggests that average teacher-rated aggression increases 
slightly across grades.  
 
The regression line for student i is given by the dark, dotted line (intercept = 2.0, slope = 
0.20). The difference between this student’s estimated aggression and the population-
level mean in the fall of 5th grade is given by ζ0i; here, ζ0i is positive because in 5th grade 
this student was more aggressive than the average 5th grader. The difference in student 
i’s slope for grade and the overall population-level slope is given by ζ1i; here, ζ1i is 
positive because student i increases in aggression faster than the average student. 
Once again, the difference between student i’s estimated aggression and his/her 
observed aggression at any assessment (black squares) is given by eit; Here, the 
student has a positive value of eit

 in the spring of 7th grade (grade = 7.5).  
 
When more than one Level 2 residual is in the model, the covariance between the 
residuals is estimated in addition to the variance of each residual. For example, in an 
unconditional growth model with a fixed and random linear effect of grade, four random 
parameters are estimated: (1) residual variance, (2) intercept variance, (3) linear slope 
for grade variance, and (4) the covariance between the intercept and slope. 
Theoretically, it is possible to interpret the covariance parameter (i.e., is there a 
significant relationship between students’ initial level of aggression and their change in 
aggression over time?) However, because the magnitude (and even direction!) of 
parameter can vary depending on where the intercept is placed, any interpretation must 
note the conditional dependence of the effect (e.g., there is a small positive association 
between a student’s aggression in 5th grade and their change in aggression over time).  
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Figure 14. Illustration of Several Parameters in the Unconditional Growth Model 

 
To determine which unconditional growth model fit best, a series of models were 
sequentially estimated with restricted maximum likelihood (REML). The significance of 

ζ1i 
(difference in 

slopes) 

eit
 

γ10 (overall 
slope) γ00 overall mean, Fall 3rd grade 
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the fixed effects was evaluated with t-tests. The significance of random effects was 
evaluated by comparing the difference between the REML deviance (-2 Res Log 
Likelihood) for the full and restricted models to a Chi-square distribution, with df = 
number of random parameters added to the model.   
 
The syntax to estimate the unconditional growth model with a fixed linear effect of grade 
(Model 2) is shown in Figure 15 and the output is shown in Figure 16.  

Figure 15. SAS Syntax for Estimating a Model with a Fixed Linear Effect for Grade 
 

 

 
Figure 16. Output from a Model with a Fixed Linear Effect for Grade 

 
Adding a fixed effect of grade reduced the intercept from 0.33 (overall mean across all 
assessments) to 0.31 (mean in the fall of 5th grade). There was also a small, positive 
effect of grade (γ10 = 0.02, p < .001). There was very little impact of the fixed effect of 
grade on the intercept variance or residual variance.  
 
Next, a model that added a random linear effect of grade was estimated (Model 3). The 
syntax to estimate this model is shown in Figure 17. The random effect of grade is 
added to the model by including “grade5” as part of the random statement. The 
covariance between the intercept and the linear effect of grade is automatically included 
(i.e., it does not need to be specified in the model or random statements).  

TITLE "Unconditional Growth Model: Fixed Linear Effect for Grade"; 
PROC MIXED DATA = &udatafile. NOCLPRINT NOITPRINT COVTEST METHOD=REML; 
 WHERE NMISS(core)=0;  
 CLASS ID; 
 MODEL lntagg = grade5 / SOLUTION DDFM=Satterthwaite; 
  * A fixed linear effect of grade is added in this model; 
 RANDOM INTERCEPT / TYPE = UN SUBJECT=ID; RUN; 
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Figure 17. SAS Syntax for Estimating a Fixed and Random Linear Effect for Grade 
  
The output for Model 3 is shown in Figure 18. Although the Z-value for the random 
linear variance, UN(2,2), is significant (p < .001), it is better to use deviance tests to 
determine whether the addition of a random linear effect of grade improved model fit. 
The REML deviance difference (2) = 1553.0 – 1446.9 = 106.1, p < .001: in other words, 
adding a random linear effect of grade significantly improved model fit. How did the 
model fit improve? Note that the residual (i.e., Level 1 error) variance for Model 3 ( 2

iteσ = 

0.06) was less than the residual variance for Model 2 ( 2
iteσ = 0.07). By allowing students 

to have their own slopes, it was possible to explain some of the variance that had been 
attributed to error in Model 2. 
 

 

 
Figure 18. Output from a Model with a Fixed & Random Linear Effect for Grade 

 
The covariance between students’ intercepts and slopes, UN(2,1) was not significant 
( 2

10 iiζζσ = -0.004, p = .07), indicating that students who were more aggressive in the fall of 
5th grade experienced similar levels of growth in aggression over time (i.e., similar 
slopes) as students who were less aggressive. This covariance is not of interest here, 
however, as 5th grade does not represent any meaningful starting point (other than the 
earliest point at which all cohorts were assessed); therefore, this value will not be 
interpreted in other models.  
 

TITLE "Unconditional Growth Model: Fixed & Random Linear Effect for Grade"; 
PROC MIXED DATA = &udatafile. NOCLPRINT NOITPRINT COVTEST METHOD=REML; 
WHERE NMISS(core)=0;  
CLASS ID; 
MODEL lntagg = grade5 / SOLUTION DDFM=Satterthwaite; 
  * A fixed linear effect of grade is added in this model; 
RANDOM INTERCEPT grade5 / TYPE = UN SUBJECT=ID; RUN; 
  * A random linear effect of grade is added in this model; 
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Combining the fixed and random effects of grade also indicated that on average there is 
a small increase in teacher-rated aggression across grade (γ10 = 0.03, p < .001), with 
significant between-person variation in this trajectory, 95% C.I. = [-0.13, 0.18]. From the 
confidence interval it is clear that some students became more aggressive across 
grades, whereas other students became less aggressive across grades.4

 
  

Next, a model adding a fixed effect of grade2 (Model 4) was estimated by adding 
grade5*grade5 to the model statement in the SAS syntax shown in Figure 17. The fixed 
effect of grade2 was not significant (γ20 = -0.0001, p = .97). However, before this effect 
was removed from the model, a random effect of grade2 (Model 5) was tested. To do so, 
grade5*grade5 was added to the random statement in the SAS syntax shown in Figure 
17. Adding a random quadratic effect of grade significantly improved model fit, REML 
deviance difference (3) =  52.4, p < .001. Therefore, even though on average there was 
no significant quadratic effect of grade, there was significant variation in this effect 
across people, 95% C.I. = [-0.04, 0.04]. Therefore, the non-significant fixed effect of 
grade2 was retained in the model.  
 
Finally, a fixed effect of semester was added to the model (Model 6). There was a small 
positive effect of semester (γ30 = 0.03, p <.01), indicating that teacher-rated aggression 
was slightly higher in the spring than in the fall.  
 
Table 7 summarizes the parameter estimates for the six models that were estimated. 
REML deviance, AIC, and BIC are also provided for each model.  
 
Table 7. Parameter Estimates & Fit Statistics for Unconditional Means & Growth Models 

Fixed Effect RC SE RC SE RC SE RC SE RC SE RC SE
Intercept 0.33*** 0.01 0.31*** 0.02 0.31*** 0.02 0.31*** 0.02 0.31*** 0.02 0.30*** 0.02
Level 1

Grade - 5 0.02*** 0.004 0.03*** 0.006 0.03*** 0.007 0.03*** 0.006 0.02*** 0.007
(Grade-5)2 -0.0001 0.003 -0.0003 0.004 -0.0006 0.004
Semester (Fall=0) 0.03** 0.009

Random Effect RC SE RC SE RC SE RC SE RC SE RC SE
Level 1 0.07*** 0.002 0.07*** 0.002 0.06*** 0.002 0.06*** 0.002 0.06*** 0.002 0.06*** 0.002
Level 2

Intercept 0.08*** 0.007 0.08*** 0.007 0.09*** 0.007 0.09*** 0.007 0.10*** 0.008 0.10*** 0.008
Grade - 5 0.006*** 0.001 0.006*** 0.001 0.006*** 0.001 0.006*** 0.001
(Grade-5)2 0.002*** 0.0004 0.002*** 0.0004

-2 Resid LL 1580.5 1553 1446.9 1456.7 1404.3 1401.9
AIC 1584.5 1557 1454.9 1464.7 1418.3 1415.9
BIC 1592.6 1565.1 1471.2 1480.9 1446.7 1444.3
 ** p < .01;  *** p < .001 

Model 5 Model 6

Variance Components

Model 1 Model 2 Model 3 Model 4

Note. Covariance parameters were estimated but are not displayed here  
 

                                                 
4 As noted above, the confidence interval indicates the extent to which the slope varies across people, rather than the 
precision of the slope parameter. Therefore, the result is still significant even though the confidence interval contains 
0. Because the confidence interval has both positive and negative values, this suggests that some people increased in 
aggression over time (positive slope), some people decreased in aggression over time (negative slope) and some 
people did not have any consistent linear change in aggression over time (zero slope) 
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5.3 Adding Controls  
 
Once an unconditional model of time was established, the next step was to add control 
variables (i.e., covariates) to the model. Three variables were added:  
 
Group size. Because the number of peers that students hang around with may be 
related to their aggression, it was important to control for the number of group members 
that a student had. Group size varies from assessment to assessment (i.e., a with-
person effect), so number of group members was added as a time-varying covariate to 
the Level 1 model.  
 
Gender. Direct aggression is more common among boys than among girls, so gender (a 
between-person effect) was added to the Level 2 model.  
 
Cohort. As described above, the cohort-sequential study design provides a way to test 
the generalizability of results within a single study. In order to do so, the results must be 
consistent across cohorts. In the current model, the cohort indicators were added to the 
Level 2 model to test whether the intercept (centered at the fall of 5th grade) was 
different across cohorts.5

 
  

Level 1 Model:  

Teacher-rated aggressionti = β0i + β1i (gradeti - 5) + β2i (gradeti - 5)2 + β3i (semesterti) + β4i 

(# of group membersti - 7) + eti 

Level 2 Model:  

β0i = γ00 + γ01(genderi) + γ02(middle cohorti) + γ03(oldest cohorti) + ζ0i 

β1i = γ10 + ζ1i 

β2i = γ20 + ζ2i 

β3i = γ30  

β4i = γ40  

The output for this model is shown in Figure 19 on the next page. The intercept of 0.27 
in this model indicates that on average, girls had a very low teacher-rated aggression in 
the fall of 5th grade (1.31 on the 1 to 5 untransformed scale)6

                                                 
5 When all three control variables are added in a single step, then we are actually testing whether the 
intercept is different for girls (gender = 0) with an average sized group (# of group members = 5) in the fall 
of 5th grade. Because of this, an intermediate model testing adding just the cohort indicators, before 
adding gender and group size, was estimated. No differences in the intercept were found for either cohort 
indicator, both p > .1.  

. There was a significant 
effect of gender on the intercept: in the fall of 5th grade, all else being equal (i.e., cohort 
and group size), boys had a higher natural log teacher-rated aggression score than girls 
(γ01 = 0.11, p <.001); in other words, on average, boys had a teacher-rated aggression 

6 Note that at this point, the model assumptions have not been tested, therefore any interpretations of 
parameter estimates are preliminary. Interpretation is discussed here solely to facilitate an understanding 
of the information that the model provides.  
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of 0.38 (or 1.46 on the untransformed scale). There was no difference in aggression for 
girls in the oldest (cohort 1) and youngest (cohort 3) cohorts (γ03 = -0.02, p = .66); 
however there was a trend for girls in middle cohort (cohort 2) to have a lower teacher-
rated aggression than girls in the youngest cohort (γ02 = -0.06, p < .10). There was no 
effect of group size at time t on a student’s aggression at time t (γ40 = -0.0002, p = .66). 
 

 
Figure 19. Fixed Effect from a Model Adding Controls for Group Size, Gender, & Cohort 

 
5.4 Full Model  
 
Once the effect of control variables was established, a full model could be estimated. 
There are 10 predictor variables that can be included in the model. Testing all possible 
interactions among the variables would not be practical: not only would higher order 
interactions be difficult to interpret, but testing a large number of interaction terms would 
likely inflate the Type I error rate (just by chance, some higher order interaction effects 
are likely to be significant). Therefore, the statistical questions are used to guide how 
the statistical models should be set up.  
 
The primary statistical questions focus on whether generally affiliating with aggressive 
group members (i.e., average group), affiliating with more aggressive group members 
than usual at the current assessment (i.e., current group), or affiliating with more 
aggressive group members than usual at the past assessment are associated with 
student’s aggression. In addition, the fourth statistical question is whether or not these 
associations are moderated by gender. Finally, given the cohort-sequential design of 
the study, it is important to test whether the effects are consistent across cohorts.  
 
Average group is a between-person effect: students who generally affiliate with 
aggressive group members may have different regression lines than students who 
generally affiliate with non-aggressive group members. This question does not focus on 
whether the association between average group and a student’s own aggression varies 
across time; therefore, average group is added as a predictor of the student-specific 
(Level 2) intercepts, but not as a predictor of the linear or quadratic effects of grade. 
 
To test whether the association between average group and average teacher-rated 
aggression are moderated by gender, an interaction between gender and average 
group is added as a predictor of the student-specific intercepts. In addition, to test 
whether the association between average group and average aggression is consistent 
across cohorts, two interaction terms (middle cohort by average group and oldest cohort 
by average group) are added as predictors of the student-specific intercepts.  
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In contrast, current and past group are within-person, or time-varying effects: students 
may be more or less aggressive than predicted by their regression line because of the 
aggressiveness of their group members at the current assessment or the 
aggressiveness of their group members at the past assessment. Therefore, current and 
past group are added as Level 1 predictors of teacher-rated aggression and each term 
is given its own regression coefficient.  In turn, these regression coefficients may be 
predicted by gender, cohort, or average group. Essentially, adding these variables to 
the Level 2 prediction of the coefficients for current group and past group creates 
interaction terms between each variable and the within-person effect. For example, 
adding gender as a predictor of the regression coefficient for current group is the same 
as testing a gender by current group interaction. It is also possible that the coefficients 
may vary across students, so a random error term for current group and a random error 
term for past group should also be tested.  
 
Translating these statistical questions into coefficients for the multilevel model leads to 
the complete Level 1 and Level 2 models specified below.  
 
Level 1 Model:  

Teacher-rated aggressionti = β0i + β1i (gradeti - 5) + β2i (gradeti - 5)2 + β3i (semesterti) + β4i 

(# of group membersti - 7) + β5i (current groupti) + β6i (past groupti) + eti 

Level 2 Model:  

β0i = γ00 + γ01(genderi) + γ02(middle cohorti) + γ03(oldest cohorti) + γ04(average groupi) +   

γ05(genderi)*(average groupi) + γ06(middle cohorti)*(average groupi)+ γ07(oldest 

cohorti)*(average groupi) + ζ0i 

β1i = γ10 + ζ1i 

β2i = γ20 + ζ2i 

β3i = γ30  

β4i = γ40  

β5i = γ50 + γ51(genderi) + γ52(middle cohorti) + γ53(oldest cohorti) + γ54(average groupi) +ζ3i 

β6i = γ60 + γ61(genderi) + γ62(middle cohorti) + γ63(oldest cohorti) + γ64(average groupi) +ζ4i 

 
The output for the full model is shown in Figure 20. The number of observations for the 
full model indicates fewer observations were used here (N = 2451) than in the 
unconditional means model (N = 3007). This reduction occurred because in the full 
model, only observations in which a student had a within-person group members’ 
aggression score at both the current and past assessments were used. All observations 
from the initial assessment (i.e., fall of 3rd, 4th, or 5th grade, depending on the cohort) 
were thus excluded from the model. In addition, seven students were dropped from the 
analysis because they did not have any consecutive observations. The remaining 
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observations that were dropped were from students who were included in the analysis 
but who had some non-consecutive observations.7

 
  

 

 
Figure 20. SAS Output for Full Model 

 
Non-significant effects interactions were removed one at a time, and the model was re-
estimated after each interaction was removed. Because all of the main effects were 

                                                 
7 Note that models which include different subsets of students should not be directly compared. To make 
any conclusions that the full model is better than the unconditional growth model, the unconditional 
growth model needs to be re-estimated using only those students who are included in the full model. 
When the unconditional growth model was re-estimated, the results were essentially the same as those 
presented for the unconditional growth model in this report. When the final model, described later, was 
compared to the unconditional growth model with the same number of cases, the final model was found 
to significantly improve model fit.  
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either control variables (grade, grade2, semester, number of group members, gender, 
and cohort) or substantively interesting even if they were non-significant (average, 
current, and past group), all main effects were left in the model.  Random effects of 
current group and past group were tested, but they did not significantly improve model 
fit, both REML deviance difference (4) < 9.5. A significant gender by current group 
interaction and a significant average by current group interaction were found. To ensure 
that these effects did not differ across cohorts, three-way interactions (and all two-way 
interactions among the effects in the three-way interactions) were tested. Neither three-
way interaction with cohort was significant, p > .05, so they were removed from the 
model. In addition to these two-way interactions, a significant current group by cohort 
interaction was found for the oldest cohort.  
 
Before concluding that this was the final model, however, one additional model 
specification was considered. Ideally, in a multilevel model the addition of random 
effects of time accounts for the patterns of variances and covariances over time. 
However, it is also possible to add a covariance structure to the residuals errors to 
account for any remaining patterns (Hedeker & Gibbons, 2006). For example, a first-
order autoregressive structure, AR(1), implies that the correlation between two 
assessments decreases exponentially as the time between the two assessments 
increases. A Toeplitz structure implies that the relationship between two assessments 
decreases as the time between the assessments increases, but a different correlation is 
allowed for each lag (i.e., consecutive assessments have a different correlation than 
assessments that are separated by additional assessments).   
 
Thus, several alternative covariance structures (AR(1), TOEP, TOEPH) were tested and 
compared using REML deviance differences. The covariance structure is added to the 
multilevel model by adding a repeated statement to the SAS syntax. To treat time as 
both continuous (in the random statement) and categorical (in the repeated statement), 
the non-centered effect of grade was specified as a categorical factor. The SAS syntax 
to estimate a multilevel model with autocorrelated errors is given in Figure 21.  
  

  Figure 21. SAS Syntax for Adding a Covariance Structure to the Level 1 Residuals 
 

TITLE "Adding a Covariance Structure for the Level 1 Residuals"; 
PROC MIXED DATA = &udatafile. NOCLPRINT NOITPRINT COVTEST METHOD=REML; 
 WHERE NMISS(core)=0;  
 CLASS ID cohort grade; * Grade is added treated as a categorical factor; 
MODEL lntagg = grade5 grade5*grade5 semesterF sz_gm5 sexF cohort  

BPgmavzppagg WPgmavzppaggLag0 WPgmavzppaggLag1  WPgmavzppaggLag0*sexF  
BPgmavzppagg*WPgmavzppaggLag1 WPgmavzppaggLag0*cohort  

 / SOLUTION DDFM=Satterthwaite; 
 RANDOM INTERCEPT grade5 grade5*grade5 / TYPE = UN SUBJECT=ID; 
 REPEATED grade/ TYPE=AR(1) SUBJECT = ID; RUN; 
/* Adding a REPEATED statement applies a covariance structure to the Level 1 

residuals 
Grade, rather than grade5, is added to the repeated statement, as grade 

is being treated as a categorical factor  
 The best-fitting structure was of TYPE = AR(1) */ 
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The best fitting model was the AR(1) model. The model with the AR(1) structure 
improved model fit compared to the model with no covariance structure for the Level 1 
errors, REML deviance difference (1) = 25.5, p < .001. With the addition of the AR(1) 
error structure, the interaction between average group and past group became non-
significant (p > .05). Therefore, it was removed from the final model. The final model is 
shown in Figure 22.  
 

 

 
Figure 22. SAS Output for Final Model 

 
Before interpreting the final model, however, it is important to check whether or not the 
model assumptions are met. This topic is examined in the next section.   
 
5.5 Checking Assumptions  
 
As with other regression models the multilevel model makes several assumptions 
(Singer & Willet, 2003). First, error is expected to be normally distributed. There are 
multiple error terms in the final model (Level 1 residuals, and Level 2 errors for 
intercept, linear effect of grade, and the quadratic effect of grade), and all of them 
should be approximately normally distributed. Second, the error terms should exhibit 
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constant variance across levels of the predictor variables. This can be examined by 
plotting the Level 1 variables against the Level 1 predictor variables and plotting the 
Level 2 variables against the Level 2 predictor variables.  
 
The SAS syntax for checking model assumptions is provided in Appendix 1. The 
residual plots are provided in Appendices 3 (checking for normality of residuals), 4 
(checking for constant variance of level 1 variables across levels of level 1 predictors), 
and 5 (checking for constant variance of level 2 variables across levels of level 2 
predictors).  
 
Examination of the residual distributions suggests that the normality assumption is 
probably adequately met. There is some small positive skew of the Level 1 residuals 
and the intercept error terms, which probably reflects that even after transforming 
teacher-rated aggression, it is still a little skewed. The skew in the residual distributions 
is not too extreme, however.  
 
Examination of the Level 1 and Level 2 residuals against the predictor variables 
suggests that the assumption of homoscedasticity is met for the most part. Variance 
appears to decrease slightly as the number of group members increases (only a small 
number of students have the largest number of group members). However, the 
decrease was not severe enough to warrant testing additional models to try to account 
for the decrease in variance. It also appears that the youngest cohort exhibited more 
variance in the Level 2 residuals than the other two cohorts (most likely because they 
were in the study for the longest period of time). Estimating separate variance terms for 
each cohort (by adding cohort as a grouping variable on the random statement) did not 
significantly improve model fit, however. Therefore, it was concluded that although there 
appeared to be greater variance for the youngest cohort, this variance did not 
significantly impact model estimation.    
 
5.6 Interpreting the Final Model 
 
Because there are many effects in the final model, the intercept must be interpreted 
carefully. The intercept of 0.30 is the natural log of teacher-rated aggression of girls in 
the youngest cohort in the Fall of 5th grade, who have an average number of group 
members, who on average have slightly aggressive groups, and whose current and past 
groups are as aggressive as they usually are. In other words, the intercept is the 
expected natural log of teacher-rated aggression when all of the predictor variables are 
zero (i.e., grade-5 = 0, semesterF = 0, sexF = 0, cohort1 = 0, cohort2 = 0, group size – 5 
= 0, Average Group = 0, Current Group = 0, Past Group = 0). These girls have an 
untransformed teacher-rated aggression score of 1.35, with a 95% C.I. = [1.00, 2.22].   
 
Consistent with earlier models, there was a small, positive effect of the fixed effect of 
grade (γ10 = 0.02, p < .05), no effect of the fixed effect of grade2 (γ20 = 0.003, p = .53), a 
small, positive effect of semester (γ30 = 0.03, p < .01) and significant random variation in 
both the linear and quadratic effects of grade. The number of group members was not 
associated with teacher-rated aggression.  
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There was also a positive effect of average group (γ04 = 0.34, p < .001), such that 
students who typically affiliate with aggressive group members on average have higher 
teacher-rated aggression than youth who typically affiliate with less aggressive group 
members. The main effect of gender can no longer be interpreted directly, because 
there was a significant gender by current group interaction. There was a small, positive 
association between current group and teacher-rated aggression for girls, but this 
association was smaller for boys. For both boys and girls, there was a very small (but 
significant) effect of past group, such that students who had more aggressive group 
members at the previous assessment had higher aggression at the current assessment.  
 
5.6.1 Interpreting Interaction Effects  
 
To interpret the significant current group by cohort interaction, results were plotted for 
otherwise “typical” youth (i.e., Fall of 5th grade, average number of group members). 
Results were plotted separately for each cohort. Current group was on the X-axis and 
predicted values were plotted for youth with low (1 SD below the mean; ≈ -0.3) and high 
(1 SD above the mean ≈ 0. 3) average group members. Results were also plotted 
separately for boys and girls; however, only the results from girls will be shown here (as 
suggested by the significant negative gender by current group interaction, the slope for 
current group was slightly lower for boys than for girls).  
 
To create the interaction plots, the values of each variable for the prototypical youth had 
to be assigned. A small data set with the values for two prototypical girls was created in 
Excel (see Figure 23). One of these prototypical girls had an average group aggression 
of -0.3 and one girl had an average group aggression of 0.3. Then, different values of 
current group were assigned (from -.6 to 0.6). Once these prototypical girls were 
created, it was possible to plot their predicted teacher-rated aggression in SAS. The 
syntax to plot the interactions for these prototypical youth is given in Appendix 2. The 
process was repeated with prototypical girls in the middle and oldest cohorts and for 
boys, simply by altering the relevant variables in the Excel worksheet.  
 

Order ID Cohort Grade Grade5 BPgmavzppagWPgmavzppa WPgmavzppa core sz_gm5 sexF semesterF
1 -102 3 5 0 -0.3 -0.6 0 1 0 0 0
1 -102 3 5 0 -0.3 -0.4 0 1 0 0 0
1 -102 3 5 0 -0.3 -0.2 0 1 0 0 0
1 -102 3 5 0 -0.3 0 0 1 0 0 0
1 -102 3 5 0 -0.3 0.2 0 1 0 0 0
1 -102 3 5 0 -0.3 0.4 0 1 0 0 0
1 -102 3 5 0 -0.3 0.6 0 1 0 0 0
2 -104 3 5 0 0.3 -0.6 0 1 0 0 0
2 -104 3 5 0 0.3 -0.4 0 1 0 0 0
2 -104 3 5 0 0.3 -0.2 0 1 0 0 0
2 -104 3 5 0 0.3 0 0 1 0 0 0
2 -104 3 5 0 0.3 0.2 0 1 0 0 0
2 -104 3 5 0 0.3 0.4 0 1 0 0 0
2 -104 3 5 0 0.3 0.6 0 1 0 0 0  

Figure 23. Excel Worksheet with Prototypical Girl in Cohort 3  
 
The interaction plots obtained from SAS are shown in Appendix 6. Before examining the 
impact of cohort, it is clear that the strongest effect in all three cohorts is the difference 
between students who typically affiliate with aggressive groups (high average group) 
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and students who typically affiliate with non-aggressive groups (low average group). 
The difference in the light grey and black lines illustrates that students who typically 
have aggressive group members are on average more aggressive then students who 
typically have non-aggressive group members. These results are consistent with the 
significant positive effect of average group (γ04 = 0.34, p < .001).  
 
Affiliating with more aggressive group members than usual at a particular assessment is 
associated with slightly higher teacher-rated aggression, although this association is 
strongest in the oldest cohort. There is little different between the middle and youngest 
cohort. These results are consistent with the significant current group by oldest cohort 
interaction (γ07 = 0.09, p < .05) and the non-significant current group by middle cohort 
interaction (γ06 = -0.03, p = .25). 
 
5.7 Summary 
 
In sum, the results highlight some of the potential benefits of using an MLM strategy to 
address questions about peer influence. Using MLM, rather than repeated measures 
ANOVA, allows all observations to be used, rather than requiring complete case 
analysis. This is particularly important when longitudinal cohort-sequential designs are 
used. In addition, MLM allows for variation across students in how they change over 
time (i.e., it allows for subject-specific slopes in addition to subject-specific intercepts).  
 
MLM also improves upon the tendency in the field of peer relationships of inferring peer 
influence from ordinary least squares (OLS) regression models in which peer 
characteristics predict change over time in a child’s outcome (i.e., Time1 [T1]-Peer 
predicts Time2-Student Aggression after controlling for T1-Student Aggression). This 
OLS approach assumes that the effect of the T1-Peer variable represents the unique 
effects of the T1 Peer context. Given that peer contexts have some continuity over time, 
however, the T1-Peer variable may be better conceptualized as reflecting two distinct 
components: a child’s typical (or average) peer context and his or her deviation from 
that average at T1. OLS regression “bundles” these conceptually distinct components 
into a single parameter estimate, whereas MLM allows them to be separated into two 
parameters (Singer & Willett, 2003; Snijders & Bosker, 1999).  
 
Separating within- and between-person effects in the analyses here allowed for the 
possibility that within-person effects would drive the association between affiliating with 
aggressive groups and student’s aggression. Instead, the results indicated that past 
group members only had a very small influence on current aggression, after controlling 
for the effect of current group and average group. Instead, typically affiliating with an 
aggressive group (i.e., average group) had a much stronger effect. The interpretation of 
this between-person effect, however, is ambiguous: it could reflect both selection and 
on-going influence (e.g., maintenance or cumulative effects). The results suggest that 
studies relying on OLS regression may overestimate the strength of peer influence, by 
interpreting a parameter that combines between- and within-person effects as only 
reflecting socialization.  
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Appendix 1. 
SAS Syntax for Checking Model Assumptions  
 
/*** Checking Model Assumptions ***/ 
 
DATA work.association;  
 SET STATFP.StatApr09;  
 
/*Define global variable for datafile name to be replaced in code below */ 
 
%GLOBAL udatafile varname varlabel filesave; 
%LET udatafile=STATFP.lntagg; 
%LET varname=lntagg; 
%LET varlabel=LN Teacher-rated Aggression; 
%LET filesave = F:\Courses\Stat 581\Final Project\Resid Plots; 
RUN; 
 
/* Rerun the model, this time saving predicted values and residuals */  
 
TITLE1 "Model 4 - Final model"; 
PROC MIXED DATA = work.association NOCLPRINT NOITPRINT COVTEST METHOD=REML; 
 WHERE NMISS(core)=0;  
 CLASS ID cohort grade sexF; 
 MODEL lntagg = grade5 grade5*grade5 semesterF sz_gm5 sexF cohort 
BPgmavzppagg WPgmavzppaggLag0 WPgmavzppaggLag1  WPgmavzppaggLag0*sexF 
WPgmavzppaggLag0*cohort  
 / SOLUTION DDFM=Satterthwaite OUTP=L1Resids; 
 RANDOM INTERCEPT grade5 grade5*grade5 / SOLUTION TYPE = UN SUBJECT=ID;  
 REPEATED grade/ TYPE=AR(1) SUBJECT = ID; 
 ODS OUTPUT SolutionR=RandEffects; RUN; 
 
/* OUTP creates a new data set with the predicted values and residuals from 

the full model added. This new data set is a subset of the original, 
with only students from the core sample in it 

SOLUTION on the RANDOM statement creates the random effects  
ODS OUTPUT SolutionR=RandEffects saves estimated random effects to a SAS 

dataset called RandEffects */ 
 
/* Rename the residuals from the saved dataset  
   Overwrite the file, keeping student's id, grade, and Level 1 residuals */ 
 
DATA L1Resids; SET L1Resids; 
 L1Resid=Resid;  
 KEEP ID grade5 L1Resid; RUN; 
 
/* The original RandEffects data lists the random effects on separate lines 

for each student 
First, remove any estimates that are not 0;  
Then, use PROC SORT to sort the data by id. This gets the random effects 

for each student in adjacent rows 
Then, use PROC TRANSPOSE to create a new data set that treats random 

effects as variables   
Output a new data set, RandEffectsT, that has one line for each student */ 

 
DATA RandEffects; SET RandEffects; 
 IF Estimate ~=0; RUN;  
PROC SORT DATA=RandEffects; BY ID; RUN; 



Page 40 of 50 

 
PROC TRANSPOSE DATA=RandEffects OUT=RandEffectsT; 
 BY ID; * Specifies that transposing will occur within each ID;  
 ID Effect; * Specifies which var in the input has the name for the new var; 
 VAR Estimate; * Specifies which var has the value for the new var; 
 RUN; 
 
/* Rename the random effects to prevent them from overwriting the original 

variables by the same name */ 
 
DATA RandEffectsT; SET RandEffectsT; 
 RandInt = Intercept;  
 RandGrade = Grade5;  
 RandGradeSq = grade5_grade5;  
 KEEP ID RandInt RandGrade RandGradeSq; RUN; 
 
/* Merge the Level 1 residuals with the original data by student and time */ 
 
PROC SORT DATA = L1Resids;  
BY ID grade5; RUN; * Sort L1Resids by ID and grade; 
 
 
PROC SORT DATA=work.association;   
BY ID grade5; RUN; * Sort work.association by ID and grade; 
 
DATA merged;  
 MERGE work.association L1Resids; * Identify which two files to merge; 
 BY ID grade5; RUN; * Indicate which variables to match the files on; 
 
/* Merge random effects with data from above (original data + residuals) */ 
DATA Aggslope; 
 MERGE merged RandEffectsT;  
 BY ID; RUN; * Random effects are at Level 2 so match based on student; 
 
/* Label the new variables */ 
DATA Aggslope; SET Aggslope;  
LABEL L1Resid="Level 1 Residual" 
 RandInt="Random Intercept"    
 RandGrade="Random Linear Slope for Grade" 
 RandGradeSq="Random Quadratic Slope for Grade-Squared"; RUN;  
 
/* Save the new data set to the MSTP library  
   To keep the file small, only save the variables that will be needed to 

check assumptions */  
 
DATA &udatafile.; SET Work.aggslope;  
KEEP ID Grade SemesterF WPGMavzppaggLag0 WPGMavzppaggLag1 L1Resid sz_GM  
     SexF BPGMavzppagg RandInt RandGrade RandGradeSq Cohort; RUN; 
 
 
/***** Make plots to check assumptions *****/ 
 
/* Set generic plotting options for text, size, and saving plots */ 
GOPTIONS RESET=ALL NOBORDER FTEXT=Triplex FTITLE=Triplex VSIZE=4in HSIZE=5in 
GSFNAME=outgraph DEV=bmp GSFMODE=REPLACE; RUN; 
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/*** Plot a histogram of Level 1 residuals to check for normality ****/  
 
FILENAME outgraph "&filesave.\&varname. Residual Distribution.bmp"; 
 TITLE1 "Residual Distribution:" ; 
 TITLE2 "&varlabel.";  
PROC UNIVARIATE DATA=&udatafile.;  
 VAR L1Resid;  
 HISTOGRAM L1Resid; RUN; 
 
/*** Plot histogram of Level-2 residuals to check for normality ****/  
 
/* Random Intercept Residual, Level 2 Distribution */ 
FILENAME outgraph "&filesave.\&varname. Random Intercept Distribution.bmp"; 
 TITLE1 "Random Intercept Distribution:"; 
 TITLE2 "&varlabel."; 
PROC UNIVARIATE DATA=&udatafile.;  
 VAR RandInt;  
 HISTOGRAM RandInt; RUN; 
 
/* Random Linear Effect of Grade Residual, Level 2 Distribution */ 
FILENAME outgraph "&filesave.\&varname. Random Grade Distribution.bmp"; 
 TITLE1 "Random Effect of Grade Distribution:"; 
 TITLE2 "&varlabel."; 
PROC UNIVARIATE DATA=&udatafile.;  
 VAR RandGrade;  
 HISTOGRAM RandGrade; RUN; 
 
/* Random Quadratic Effect of Grade, Level 2 Residual Distribution */ 
FILENAME outgraph "&filesave.\&varname. Random GradeSq Distribution.bmp"; 
 TITLE1 "Random Effect of Grade-Square Distribution:"; 
 TITLE2 "&varlabel."; 
 PROC UNIVARIATE DATA=&udatafile.;  
 VAR RandGradeSq;  
 HISTOGRAM RandGradeSq; RUN; 
 
 
/*** Plot L1 residuals by L1 variables to check for constant variance ***/ 
 
FILENAME outgraph "&filesave.\&varname. Residuals by Grade.bmp"; 
 TITLE1 "Residuals as a Function of Grade"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL = (ANGLE=90 "Level 1 Residuals"); 
 AXIS2 LABEL = ("Grade");  
 PLOT L1Resid*grade/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Residuals by WPGMavzppaggLag0.bmp"; 
 TITLE1 "Residuals as a Function of Within-Person Current Group Members"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Level 1 Residuals"); 
 AXIS2 LABEL=("Within-person Current Group Members") ORDER=(-3 TO 3 BY 1) ;    
 PLOT L1Resid*WPGMavzppaggLag0/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Residuals by WPGMavzppaggLag1.bmp"; 
 TITLE1 "Residuals as a Function of Within-Person Past Group Members"; 
 TITLE2 "&varlabel."; 
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PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Level 1 Residuals"); 
 AXIS2 LABEL=("Within-person Past Group Members") ORDER=(-3 TO 3 BY 1) ;    
 PLOT L1Resid*WPGMavzppaggLag1/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Residuals by Semester.bmp"; 
 TITLE1 "Residuals as a Function of Semester"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Level 1 Residuals"); 
 AXIS2 LABEL=("Semester") ORDER=(-1 TO 2 BY 1) VALUE=("" "Fall" "Spring" "");    
 PLOT L1Resid*SemesterF/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Residuals by Group Size.bmp"; 
 TITLE1 "Residuals as a Function of Number of Group Members"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Level 1 Residuals"); 
 AXIS2 LABEL=("Number of Group Members") ORDER=(0 TO 20 BY 2);    
 PLOT L1Resid*sz_GM/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
/* Plot L2 residuals by L2 variables to check for constant variance */ 
 
/* Average Group Members' Aggression */  
FILENAME outgraph "&filesave.\&varname. Random Intercept by BPgrp.bmp"; 
 TITLE1 "Random Intercept Variance by Average Group Aggression"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Intercept"); 
 AXIS2 LABEL=("Average Group Aggression") ORDER=(-1.5 TO 1.5 BY .5);    
 PLOT RandInt*BPGMavzppagg/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Random Grade by BPgrp.bmp"; 
 TITLE1 "Random Grade Variance by Average Group Aggression"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Slope for Grade"); 
 AXIS2 LABEL=("Average Group Aggression") ORDER=(-1.5 TO 1.5 BY .5);    
 PLOT RandGrade*BPGMavzppagg/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Random Grade Squared by BPgrp.bmp"; 
 TITLE1 "Random Grade Squared Variance by Average Group Aggression"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Slope for Grade Squared"); 
 AXIS2 LABEL=("Average Group Aggression") ORDER=(-1.5 TO 1.5 BY .5);    
 PLOT RandGradeSq*BPGMavzppagg/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
/* Gender */  
FILENAME outgraph "&filesave.\&varname. Random Intercept by Gender.bmp"; 
 TITLE1 "Random Intercept Variance by Gender"; 
 TITLE2 "&varlabel."; 
 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Intercept"); 
 AXIS2 LABEL=("Gender") ORDER=(-1 TO 2 BY 1) VALUE=("" "Female" "Male" "");    
 PLOT RandInt*SexF/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
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FILENAME outgraph "&filesave.\&varname. Random Grade by Gender.bmp"; 
 TITLE1 "Random Grade Variance by Gender"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Slope for Grade"); 
 AXIS2 LABEL=("Gender") ORDER=(-1 TO 2 BY 1) VALUE=("" "Female" "Male" ""); 
 PLOT RandGrade*SexF/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Random Grade Squared by Gender.bmp"; 
 TITLE1 "Random Grade Squared Variance by of Gender"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Slope for Grade Squared"); 
 AXIS2 LABEL=("Gender") ORDER=(-1 TO 2 BY 1) VALUE=("" "Female" "Male" ""); 
 PLOT RandGradeSq*SexF/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
/* Cohort */  
 
FILENAME outgraph "&filesave.\&varname. Random Intercept by Cohort.bmp"; 
 TITLE1 "Random Intercept Variance as a Function of Cohort"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Intercept"); 
 AXIS2 LABEL=("Cohort") ORDER=(0 TO 4 BY 1) VALUE=("" "Oldest" "Middle" 

"Youngest" "");    
 PLOT RandInt*Cohort/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Random Grade by Cohort.bmp"; 
 TITLE1 "Random Grade Variance as a Function of Cohort"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Slope for Grade"); 
 AXIS2 LABEL=("Cohort") ORDER=(0 TO 4 BY 1) VALUE=("" "Oldest" "Middle"  

"Youngest" "");    
 PLOT RandGrade*Cohort/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
 
FILENAME outgraph "&filesave.\&varname. Random Grade Squared by Cohort.bmp"; 
 TITLE1 "Random Grade Squared Variance as a Function of Cohort"; 
 TITLE2 "&varlabel."; 
PROC GPLOT DATA=&udatafile.;  
 AXIS1 LABEL=(ANGLE=90 "Random Slope for Grade Squared"); 
 AXIS2 LABEL=("Cohort") ORDER=(0 TO 4 BY 1) VALUE=("" "Oldest" "Middle"  

"Youngest" "");    
 PLOT RandGradeSq*Cohort/ VAXIS=AXIS1 HAXIS=AXIS2; RUN; QUIT; 
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Appendix 2. 
SAS Syntax for Plotting Interaction Terms  
  
/**** Interpreting Interaction Effects ****/ 
 
/* Plot Final Model for Teacher-rated Aggression */ 
 
PROC SORT DATA=&udatafile.; BY ID; RUN; 
 
/* Import prototypical people data from ResponsePlotData file in Excel */  
 
PROC IMPORT DATAFILE = "&filesave.\ResponsePlotData.xls"  
 OUT=tagPlot DBMS=EXCEL REPLACE; * Output this file as tagPlot; 
 SHEET="girl3"; * Read data from the "Girl3" sheet (girls in cohort 3); 
 GETNAMES=YES;  * Read in the labels; 
RUN; 
 
PROC SORT DATA=tagPlot; BY ID; RUN; 
* Sort prototypical people by ID variables; 
 
DATA Merged; MERGE &udatafile. tagPlot; BY ID; RUN; 
* Merge original data set and file with prototypical people; 
* Match based on ID;  
 
/* Run final model to generate predicted values for prototypical people */ 
 
TITLE1 "Final Model"; 
PROC MIXED DATA = Merged NOCLPRINT NOITPRINT COVTEST METHOD=REML; 
 WHERE NMISS(core)=0;  
 CLASS ID cohort grade sexF; 
 MODEL lntagg = grade5 grade5*grade5 semesterF sz_gm5 sexF cohort 

BPgmavzppagg WPgmavzppaggLag0 WPgmavzppaggLag1  WPgmavzppaggLag0*sexF 
WPgmavzppaggLag0*cohort  

 / SOLUTION DDFM=Satterthwaite OUTPM=tagPred; 
 RANDOM INTERCEPT grade5 / TYPE = UN SUBJECT=ID; 
 REPEATED grade/ TYPE=AR(1) SUBJECT = ID; RUN; 
 
/* Keep only the prototypical people */ 
DATA tagPred; SET tagPred;  
 WHERE Order IS NOT MISSING; 
 PredR=exp(Pred); * Untransform the predicted values; 
RUN; 
 
PROC SORT DATA=tagPred; BY Order; RUN; 
* Sorting by order will facilitate labeling in the legend below; 
 
/* Plot Final Model for Teacher-rated Aggression */ 
 
/* Set generic plotting options for text, size, and joining lines*/ 
GOPTIONS NOBORDER FTEXT=Triplex FTITLE=Triplex VSIZE=7in HSIZE=7in   
INTERPOL=JOIN GSFNAME=outgraph DEV=BMP GSFMODE=replace; run; 

 
 FILENAME outgraph "&filesave.\Predicted LnTagg Youngest Cohort Girls.bmp";  
  * Save the file to the location specified globablly by filesave;  
 TITLE1 JUSTIFY=LEFT HEIGHT=1.5 "Predicted Teacher-rated Agg as a Function of 
Current Group"; 
 TITLE2 JUSTIFY=LEFT HEIGHT=1.3 "Youngest Cohort, Girls";  
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PROC GPLOT DATA=tagPred; 
AXIS1 LENGTH=4.5in LABEL=(HEIGHT = 1.4 ANGLE=90 "Teacher-rated Aggression") 

ORDER=(1 TO 3 BY .5); 
  * AXIS1 = Y-axis; 
  * Y-axis has a LENGTH = 4.5 inches (out of 6 inches above); 
  * HEIGHT = 1.4 sets the size of the label; 
  * ANGLE = 90 places the axis label at a 90 degree angle; 
  * ORDER = indicates that the scale goes from 1 to 3 in increments of .5; 
 
 AXIS2 LENGTH=5.5in LABEL=(HEIGHT = 1.4 "Current Group Members")       

ORDER=(-.8 TO .8 BY .2);   
  * AXIS2 = X-axis; 
  * X-axis has a LENGTH = 5.5 inches (out of 7 inches above); 
  * HEIGHT = 1.4 sets the size of the label; 
  * ORDER = indicates that the scale goes from 3 to 7 in increments of .5; 
 
 LEGEND1 FRAME POSITION = (CENTER TOP) ACROSS=1 LABEL=NONE VALUE=(HEIGHT=1.1 

COLOR=Black JUSTIFY=Left "Low Average Group" "High Average Group"); 
  SYMBOL1 COLOR=Black VALUE=Dot HEIGHT=1.3 LINE=1 WIDTH=2; 
  SYMBOL2 COLOR=Grey VALUE=Star HEIGHT=1.3 LINE=2 WIDTH=2; 
  * FRAME the legend  
  * CENTER the legend at the TOP; 
  * Only use one value across; 
  * The first VALUE is Low Average Group; 
  * The second VALUE is High Average Group; 
  * For the first values, use black dots with a solid line (LINE = 1); 
  * For the second values, use grey stars, with a dotted line (LINE = 2); 
 PLOT predr*WPgmavzppaggLag0=Order / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;  
  * Obtain specifications for LEGEND from LEGEND 1; 
  * Obtain specifications for VAXIS (i.e., Y-axis) from AXIS1 from above; 
  * Obtain specifications for HAXIS (i.e., X-axis) from AXIS2 from above;   
RUN; QUIT; 
 
 



Page 46 of 50 

Appendix 3. 
Plots to Check Normality of Level 1 and Level 2 Residuals 
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Appendix 4: 
Plots to Check Constant Variance of Level 1 across Level 1 Predictors  
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Appendix 5:  
Plots to Check Constant Variance of Level 2 Residuals across Level 2 Predictors  
 

Gender:            Cohort: 
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Between-person (Average) Group Members’ Aggression: 
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Appendix 6: Predicted Teacher-rated Aggression as a Function of Average Group 
Members, Current Group Members, and Cohort 
 

 
Oldest Cohort 

 
Middle Cohort 

 
Youngest Cohort: 

 


